
CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Assignment I:
Memorize
Objective

The goal of this assignment is to recreate the demonstration given in the first two
lectures and then make some small enhancements. It is important that you understand
what you are doing with each step of recreating the demo from lecture so that you are
prepared to do those enhancements.
Mostly this is about experiencing the creation of a project in Xcode and typing code in
from scratch. Do not copy/paste any of the code from anywhere. Type it in
and watch what Xcode does as you do so.
Be sure to review the Hints section below!
Also, check out the Evaluation section to make sure you understand what you are going
to be evaluated on with this assignment.

Due
This assignment is due before lecture 3.

Materials
• You will need to install the (free) program Xcode 14 using the App Store on your Mac

(previous versions of Xcode will not work).
• In order to recreate the demo, you will certainly need to watch the first two lectures.
• You may also want the SF Symbols application which can be downloaded from https://

developer.apple.com/sf-symbols (though you can use the built-in symbol finding UI if
you wish).

PAGE OF ASSIGNMENT I: MEMORIZE1 9

https://developer.apple.com/sf-symbols
https://developer.apple.com/sf-symbols

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Required Tasks
1. Get the Memorize game working as demonstrated in lectures 1 and 2. Type in all the

code. Do not copy/paste from anywhere.
2. After doing so, you can feel free to remove the ⊖ and ⊕ buttons at the bottom of the

screen (or not, your choice) and all of the code that supports it.
3. Add a title “Memorize!” to the top of the screen. It’s a title, so it should be in a large

font.
4. Add at least 3 “theme choosing” buttons to your UI, each of which causes all of the

cards’ emojis to be replaced with new emojis from the chosen theme. A “theme” just
means a collection of related emojis (for example, in lecture we basically had a
“Halloween” theme).

5. The face up or face down state of the cards does not need to change when the user
changes the theme.

6. The number of pairs of cards in each of your 3 themes should be different, but in no
case fewer than 4 pairs. Note that you must put a pair of each emoji in the theme into
the UI (the Memorize game wouldn’t make much sense otherwise!).

7. The cards that appear when a theme button is touched should be in an unpredictable
(i.e. random) order. In other words, the cards should be shuffled each time a theme
button is chosen.

8. The theme-choosing buttons must include an image representing the theme and text
describing the theme stacked on top of each other vertically.

9. The image portion of each of these theme-choosing buttons must be created using an
SF Symbol which evokes the idea of the theme it chooses (like the car symbol for a
Vehicles theme as shown in the Screenshot section below).

10. The text description of the theme-choosing buttons must use a noticeably smaller font
than the font we chose for the emoji on the cards.

11. Change the code so that cards appear face down by default rather than face up (this
should probably be the last thing you do since having them appear face up by default
will be convenient as you work on all of the Required Tasks above). Once you do this,
though, you will sort of be able to get a sense for what it will feel like to “play the
game” once we add our game-play logic next week.

12. Your UI should work in portrait or landscape on any iPhone and look good in light
mode and dark mode. This probably will not require any work on your part (that’s
part of the power of SwiftUI), but be sure to experiment with both orientations and
both dark and light mode and with devices of various sizes too.

PAGE OF ASSIGNMENT I: MEMORIZE2 9

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Screenshot
1. Screenshots are only provided in this course to help if you are having trouble

visualizing what the Required Tasks are asking you to do. Screenshots are not part of
the Required Tasks themselves (i.e. your UI does not have to look exactly like what you
see below).

PAGE OF ASSIGNMENT I: MEMORIZE3 9

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Hints
1. We are only prototyping the components of our UI this week. We’ll implement our

actual game play next week.
2. It’s perfectly fine to have your application start out blank (i.e. no cards) until the user

chooses one of your theme buttons. But if you remove all the Halloween emojis from
the emojis array in the lecture code, be sure to explicitly set the type of the emojis var
(since if you remove all the Halloween emojis from the array, Swift will no longer be
able to infer that the emojis var is an Array<String>).
 var emojis: Array<String> = []

3. You will almost certainly want to make emojis in your ContentView be a @State var
(since you’re going to be changing the contents of this Array as you choose themes).

4. Unless you are doing the Extra Credit, choosing a theme shows all the emojis in that
theme. Therefore, you will not need the cardCount var anymore and you will have to
fix up the ForEach.

5. In Swift, you can combine two arrays with a + sign, e.g., let combinedArray = array1 +
array2. This is only a Hint (not a Required Task).

6. Variables in your View (e.g. vars and lets) cannot be initialized using the values of
other variables in your View (since the order of initialization is not guaranteed). Swift
will complain if you try to do this.

7. Shuffling the cards might be easier than you think. Be sure to familiarize yourself
with the documentation for Array. Note that there are some seemingly identical
functions in Array, one of which is a verb and other is an adjective that is the past-
tense of that verb. Try to figure out the difference (though you can use either one). In
Swift, we generally prefer using the “past tense verb form” version. You’ll find out
why next week.

8. Other than reviewing the documentation for Array, you are not expected to use any
aspect of Swift/SwiftUI that was not shown in lecture (unless you are doing the Extra
Credit). You’re welcome to use other stuff if you want, but the assignment can be
done using only the Swift/SwiftUI features shown in lecture.

9. Remember how we avoided repeating code in lecture by creating the
cardCountAdjuster func? You’ll probably want to do the same thing when it comes to
creating your theme-choosing buttons, though a computed var might suffice here.

10. For now, avoid choosing function parameter (aka argument) names that are exactly the
same as the name of a variable in your View (e.g. emojis). This probably won’t even
come up unless you are doing the Extra Credit (esp. EC1).

11. Remember that the size of an SF Symbol Image is affected by .font(). SF Symbols are
often interleaved with surrounding Text and so Image(systemName:) conveniently
adjusts the size of the Image depending on the .font() it is modified with. It’s

PAGE OF ASSIGNMENT I: MEMORIZE4 9

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

probably a good idea to use a larger size for your theme-choosing button images (but
not for the text captions underneath them since a Required Task prohibits that). An SF
Symbol Image is also affected by the .imageScale() modifier (which is affecting the size
of the image relative to the font).

12. It would probably make sense for the baselines of the Text part of each of your
theme-chooser buttons to be lined up. This is not a Required Task, but a good solution
will consider this. Adventurous folks might want to check out the documentation for
VerticalAlignment to really do this exactly right.

PAGE OF ASSIGNMENT I: MEMORIZE5 9

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Things to Learn
Here is a partial list of concepts this assignment is intended to let you gain practice with
or otherwise demonstrate your knowledge of.
1. Xcode 14
2. Swift 5.8
3. Writing code in the in-line function that supplies the value of a View’s body var
4. Syntax for passing closures (aka in-line functions) (i.e. code in { }) as arguments
5. Understanding the syntax of a ViewBuilder (e.g. “bag of Lego”) function
6. Using basic building block Views like Text, Button, Spacer, etc.
7. Putting Views together using VStack, HStack, etc.
8. Modifying Views (using .font(), etc.)
9. Using @State (we’ll learn much more about this construct later, by the way)
10. Very simple use of Array
11. The SF Symbols application
12. Putting system images into your UI using Image(systemName:)
13. Looking things up in the documentation (Array and possibly Font)
14. Int.random(in:) (Extra Credit)

PAGE OF ASSIGNMENT I: MEMORIZE6 9

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Evaluation
In all of the assignments this quarter, writing quality code that builds without warnings
or errors, and then testing the resulting application and iterating until it functions
properly is the goal.
Here are the most common reasons assignments are marked down:

• Project does not build.
• One or more items in the Required Tasks section was not satisfied.
• A fundamental concept was not understood.
• Project does not build without warnings.
• Code is visually sloppy and hard to read (e.g. indentation is not consistent, etc.).
• Your solution is difficult (or impossible) for someone reading the code to

understand due to lack of comments, poor variable/method names, poor solution
structure, long methods, etc.

Often students ask “how much commenting of my code do I need to do?” The answer
is that your code must be easily and completely understandable by anyone reading it.
You can assume that the reader knows the SwiftUI API and knows how the Memorize
game code from lectures 1 and 2 works, but should not assume that they already know
your (or any) solution to the assignment.

PAGE OF ASSIGNMENT I: MEMORIZE7 9

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Extra Credit
These are provided purely as a way to challenge yourself a bit. No actual “extra credit” is
earned by doing these. This section might better be called “Extra Fun Things To Do”.
1. Associate a (hopefully sensible) Color with each theme. In other words, whenever a

“Halloween” theme is chosen, the cards are .orange, but if a “Water” theme is chosen,
they are .blue. This will require you to have some @State that keeps track of this
color.

2. Make a random number of pairs of cards appear each time a theme button is chosen.
The function Int.random(in: Range<Int>) can generate a random integer in any range,
for example, let foo = Int.random(in: 15...75) would generate a random integer
between 15 and 75 (inclusive). Always show at least 2 pairs of cards though. You
might need to figure out how to do a for-in loop in Swift. Or you could take
advantage of the fact that the subscript of an Array is allowed to be a Range, e.g.
myArray[2..<6] is legal. Take care to not violate the note in Required Task 6.

3. Try to come up with some sort of equation that relates the number of cards in the game
to the width you pass when you create your LazyVGrid’s
GridItem(.adaptive(minimum:maximum:)) such that each time a theme button is chosen,
the LazyVGrid makes the cards as big as possible without having to scroll.
For example, if 8 cards are shown, the cards should be pretty big, but if 24 cards are
shown, they should be smaller. The cards should still have our 2/3 aspect ratio.
It doesn’t have to be perfect either (i.e. if there are a few extreme combinations of
device size and number of cards requiring scrolling, that’s okay). The goal is to make
it noticeably better than always using 65 or 80 is.
It’s probably impossible to pick a width that makes the cards fit just right in both
Portrait and Landscape, so optimize for Portrait and just let your ScrollView kick in if
necessary when the user switches to Landscape.
Your “equation” can include some if-else’s if you want (i.e. it doesn’t have to be a
single purely mathematical expression) but you don’t want to be special-casing every
single number from 4 to 48 cards or some such. Try to keep your “equation” code
efficient (i.e. not a lot of lines of code, but still works pretty well in the vast majority of
situations).
The type of the arguments to GridItem(.adaptive(minimum:)) is a CGFloat. It’s just a
normal floating point number that we use for drawing. You know what kind of results
65 gives you, so you’re going to have to experiment with other numbers up and down
from there.
You likely will want to put your calculation in a func or a var. Maybe something like:
 func widthThatBestFits(cardCount: Int) -> CGFloat { ... }, or …
 var cardWidth: CGFloat { ... }

PAGE OF ASSIGNMENT I: MEMORIZE8 9

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

By the way, if you want to multiply a CGFloat by an Int, you need to create a CGFloat
from the Int, e.g. let x: CGFloat = CGFloat(anInt) * aCGFloat.
Also remember that if your func or var has more than one line of code in it, you will
need to use the return keyword to return a value from your func or var. In lecture it
just so happened that all of our funcs and vars had a single line of code. That may
or may not be the case for your code.
Next week we’ll dive into trying to really do this Extra Credit item right (and we’ll
consider not only the adaptive minimum and count of cards, but also the font size and
the amount of space we have available to draw our cards in).

PAGE OF ASSIGNMENT I: MEMORIZE9 9

	Assignment I:
	Memorize
	Objective
	Due
	Materials
	Required Tasks
	Screenshot
	Hints
	Things to Learn
	Evaluation
	Extra Credit

