
CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Assignment II:
More Memorize
Objective

The goal of this assignment is to continue to recreate the demonstrations given through
lecture 5 (now that we’ve added game logic) and then make some bigger enhancements
(new game button, themes and scoring). It is important that you understand what you
are doing with each step of recreating the demo from lecture so that you are prepared
to do those enhancements.
This continues to be about experiencing the creation of a project in Xcode and typing
code in from scratch. Do not copy/paste any of the code from anywhere.
Type it in and watch what Xcode does as you do so.
Be sure to review the Hints section below!
Also, check out the latest in the Evaluation section to make sure you understand what
you are going to be evaluated on with this assignment.

Due
This assignment is due before lecture 6.

Materials
Xcode (as explained in assignment 1).
Your solution to Assignment 1.

PAGE OF ASSIGNMENT II: MORE MEMORIZE1 8

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Required Tasks
1. Get the Memorize game working as demonstrated in lecture (through lecture 5, your

choice). Type in all the code. Do not copy/paste from anywhere.
2. If you’re starting with your assignment 1 code, remove your theme-choosing buttons

and (optionally) the title of your game. The shuffle button added in lecture is also
optional.

3. Add a “New Game” button to your UI (anywhere you think is best) which begins a
brand new game.

4. Add a formal concept of a “Theme” to your Model. A Theme consists of a name for
the Theme, a set of emoji to use, a number of pairs of cards to show (which is
not necessarily the total number of emojis available in the theme), and an
appropriate color to use to draw the cards.

5. Support at least 6 distinct Themes in your game.
6. Each new game should use a randomly chosen Theme to display its cards.
7. If the number of pairs of emoji to show in a Theme is fewer than the number of

emojis that are available in that Theme, then it should not just always use the first few
emoji in the Theme. It must randomly use any of the emoji in the Theme. In other
words, do not have any “dead emoji” in your code that can never appear in a game.

8. A new Theme should be able to be added to your game with a single line of code.
9. The cards in a new game should all start face down and shuffled.
10. Show the Theme’s name in your UI. You can do this in whatever way you think

looks best.
11. Keep score in your game by penalizing 1 point for every previously seen card that is

involved in a mismatch and awarding 2 points for every match (whether or not the cards
involved have been “previously seen”). See Hints below for a more detailed
explanation. The score is allowed to be negative if the user is bad at Memorize.

12. Display the score in your UI. You can do this in whatever way you think looks best.

PAGE OF ASSIGNMENT II: MORE MEMORIZE2 8

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Hints
1. Your ViewModel’s connection to its Model can consist of more than a single var model.

It can be any number of vars. The “Model” is a conceptual entity, not a single struct.
2. A Theme is a completely separate thing from a MemoryGame (even though both are part

of your application’s Model). You should not need to modify a single line of code in
MemoryGame.swift to support Themes (though you will of course have to modify
MemoryGame.swift to support scoring).

3. A game is represented purely by an EmojiMemoryGame and a Theme. So creating a new
game is simply a matter of creating new ones of both of these. Since we @Published
our EmojiMemoryGame var in our ViewModel, any changes to it (including completely
replacing it) will cause our UI to automatically react and update.

4. A Theme is part of your Model, so it must be UI-independent. Representing a color
in a UI-independent way is surprisingly nuanced (not just in Swift, but in general).
We recommend, therefore, that you represent a color in your Theme as a simple
String which is the name of the color, e.g. “orange”. Then let your ViewModel do
one of its most important jobs which is to “interpret” the Model for the View. It can
provide the View access to the current Theme’s color in a UI-dependent representation
(like SwiftUI’s Color struct, for example). You might find a switch statement useful for
this interpretation, but a cascading if-else is fine too. A Dictionary could also be a
cool solution to this problem.

5. You don’t have to support every named color in existence (a dozen or so is fine), but
it’d probably be a good idea to do something sensible if your Model contains a color
(e.g. “fuchsia”) that your ViewModel does not know how to interpret.

6. We’ll learn a better (though still not perfect) way to represent a color in a UI-
independent fashion later in the quarter.

7. You might find Array’s randomElement() function useful in this assignment (though note
that this function (understandably) returns an Optional, so be prepared for that!).
This is just a Hint, not a Required Task. The static function Int.random(in:) could
also be used if you prefer.

8. There is no requirement to use an Optional in this assignment (though you are
welcome to do so if you think it would be part of a good solution).

9. You’ll very likely want to keep the static func createMemoryGame() from lecture to
create a new memory game. But that function needs a little bit more information to
do its job now, so you will almost certainly have to add an argument to it.

10. On the other hand, you obviously won’t need the static let emojis from last week’s
lecture anymore because emojis are now obtained from the current Theme.

PAGE OF ASSIGNMENT II: MORE MEMORIZE3 8

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

11. It’s quite likely that you will need to add an init() to your ViewModel. That’s
because you’ll probably have one var whose initialization depends on another var.
You can resolve this kind of catch-22 in an init() because, in an init(), you can
control the order in which vars get initialized (whereas, when you use property
initializers to initialize vars, the order is undetermined, which is why property
initializers are not allowed to reference other (non-static) vars).

12. The code in your ViewModel’s init() might look very, very similar to the code
involved with your New Game mechanism since you obviously want to start a new
game in both of these places. Don’t worry if you end up with some code duplication
here (you probably don’t quite know enough Swift yet to factor this code out).

13. A card has “already been seen” only if it has, at some point, been face up and then is
turned back face down. So tracking “seen” cards is probably something you’ll want to do
when you are changing a card from face up to face down (not the other way around).

14. Make sure you think carefully about where code goes to solve the various problems in
this assignment (i.e. in the View, or in the ViewModel, or in the Model?). This
assignment is mostly about MVVM, so this is very important to get right.

15. If you started a game by flipping over 🐧 + 👻 , then flipping over a ✏ + 🏀 , then
flipping over two 👻 s, your score would be 2 because you’d have scored a match (and
no penalty would be incurred for the flips involving 🐧 , ✏ or 🏀 because they have
not (yet) been involved in a mismatch). If you then flipped over the same 🐧 again +
🐼 , then flipped 🏀 + that same 🐧 yet again, your score would drop 3 full points
down to -1 overall because that 🐧 card had already been seen (on the very first flip)
and subsequently was involved in two separate mismatches (scoring -1 for each
mismatch) and the 🏀 was also mismatched after already having been seen (-1). If
you then flip the 🐧 + the other 🐧 that you finally found, you’d get 2 points for a
match and be back up to 1 total point. 2 - 1 - 1 - 1 + 2 = 1.

16. The “already been seen” concept is about specific cards that have already been seen,
not emoji that have been seen.

17. We’re not making this a Required Task (yet), but try to put the keyword private or
private(set) on any variables or functions where you think it would be appropriate.

PAGE OF ASSIGNMENT II: MORE MEMORIZE4 8

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Things to Learn
Here is a partial list of concepts this assignment is intended to let you gain practice with
or otherwise demonstrate your knowledge of.
1. MVVM
2. Intent functions
3. init functions
4. Type Variables (i.e. static)
5. Access Control (i.e. private)
6. Array
7. Closures

PAGE OF ASSIGNMENT II: MORE MEMORIZE5 8

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Evaluation
In all of the assignments this quarter, writing quality code that builds without warnings
or errors, and then testing the resulting application and iterating until it functions
properly is the goal.
Here are the most common reasons assignments are marked down:

• Project does not build.
• One or more items in the Required Tasks section was not satisfied.
• A fundamental concept was not understood.
• Project does not build without warnings.
• Code is visually sloppy and hard to read (e.g. indentation is not consistent, etc.).
• Your solution is difficult (or impossible) for someone reading the code to

understand due to lack of comments, poor variable/method names, poor solution
structure, long methods, etc.

Often students ask “how much commenting of my code do I need to do?” The answer
is that your code must be easily and completely understandable by anyone reading it.
You can assume that the reader knows the iOS API and knows how the Memorize
game code from the lectures works, but should not assume that they already know your
(or any) solution to the assignment.

PAGE OF ASSIGNMENT II: MORE MEMORIZE6 8

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Extra Credit
We try to make Extra Credit be opportunities to expand on what you’ve learned this week.
Attempting at least some of these each week is highly recommended to get the most out
of this course.
If you choose to tackle an Extra Credit item, mark it in your code with comments so your
grader can find it.
1. Don’t let your code blow up if it tries to use an invalidly-specified Theme. For

example, ignore attempts by a Theme to try to show more cards than it has emoji to
represent or to show fewer than 2 pairs of cards (because the game makes no sense in
that scenario). Ditto if a Theme specifies a color that cannot be handled by your code
(see Hint 5). This sort of “internal consistency protection” is something you should
be wiring into all code you write, so making it “extra credit” here is underplaying its
importance. However, we’re trying to focus the Required Tasks in this early assignment
on the key SwiftUI concepts from the week.

2. Allow the creation of some Themes where the number of cards to show is not a
specific, fixed number but is, instead, a random number (which changes with every New
Game). We’re not saying that every Theme now shows a random number of cards, just
that some Themes can now be created in such a way as to show a random number of
cards each time that Theme is used. In other words, the properties of a Theme now
include whether the Theme shows a fixed number of cards or a random number of
cards. Maybe an Optional would be helpful on this one?

3. Support a gradient as one of the available “colors” for a Theme. Hint: fill() and
strokeBorder() can take a Gradient as an argument (just like they do a Color). This is a
“learning to look things up in the documentation” exercise. It’s also a bit tricky
because CardView, which fills and strokes the card, does not have access to the
ViewModel. You’ll have to give CardView the information it needs to do its job properly,
but maybe it’s overkill to pass your entire ViewModel to your CardView just for this one,
small task. You decide what you think is the cleanest solution.

4. Modify the scoring system to give more points for choosing cards more quickly (in
other words, implement time-based scoring).
For example, maybe you could give 200 points for each match (and -100 for a
mismatch), but every time you choose the first card of a pair, it starts a timer which
starts reducing the 200 points you can earn for a match by 20 points per second?
You’d have to decide how the mismatch penalty is affected by timing as well (if at all).
Another option might be to have the score be a timer which counts up (or down from
some “goal time”) and then gets slowed down by matches (and accelerated by
mismatches). Using this “score is a time interval” strategy, you’ll want to keep track of
both the game’s start time (which is constantly being adjusted by matches and
mismatches) and likely also the game’s end time so that you can show a final score

PAGE OF ASSIGNMENT II: MORE MEMORIZE7 8

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

once there are no unmatched cards left (since the score clock should stop ticking once
the game is over).
You are free to use whatever scoring strategy you think makes for the best game play
and fairest scoring. The idea here is to challenge yourself by attempting something
not covered in lecture.
You will definitely want to familiarize yourself with the Date struct. It is how all
things time-related are dealt with in Swift.
Be clear about where the logic for this scoring belongs in the MVVM architecture of
your application.
It’s beyond the scope of this assignment for you to have your View be “reacting” in
real time as the score is changing. Instead you’ll probably want to just update the
score each time a card is chosen. However, if you’re going to show your score as a
time interval rather than as points then Text view has a really cool .timer style that
you could use: Text(startTime, style: .timer) will show a constantly ticking timer of
how long it’s been (in seconds) since startTime.

PAGE OF ASSIGNMENT II: MORE MEMORIZE8 8

	Assignment II:
	More Memorize
	Objective
	Due
	Materials
	Required Tasks
	Hints
	Things to Learn
	Evaluation
	Extra Credit

