
CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Assignment III: Set
Objective

The goal of this assignment is to give you an opportunity to create your first app
completely from scratch by yourself. It is similar enough to the first two assignments
that you should be able to find your bearings, but different enough to give you the full
experience!
Since the goal here is to create an application from scratch, do not start with your
assignment 2 code, start with New → Project in Xcode.

Be sure to review the Hints section below!
Also, check out the latest in the Evaluation section to make sure you understand what
you are going to be evaluated on with this assignment.

Due
This assignment is due before lecture 9. You have an extra couple of days to work on
this assignment because it is larger in scope than assignments 1 and 2. It is effectively a
“first midterm” in this course, so start working on it early.

Materials
• You can use any of the code from lecture (e.g. AspectVGrid).
• You will want to review the rules to the game of Set.

PAGE OF ASSIGNMENT III: SET1 8

https://en.wikipedia.org/wiki/Set_(game)

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Required Tasks
1. Implement a game of solo (i.e. one player) Set.
2. As the game play progresses, try to keep all the cards visible and as large as possible.

In other words, cards should get smaller (or larger) as more (or fewer) appear on-
screen at the same time. It’s okay if you want to enforce a minimum size for your
cards and then revert to scrolling when there are a very large number of cards.
Whatever way you deal with “lots of cards” on screen, it must always still be possible
to play the game (i.e. cards must always be recognizable, even when all 81 are in play
at the same time).

3. Cards can have any aspect ratio you like, but they must all have the same aspect ratio at
all times (no matter their size and no matter how many are on screen at the same
time). In other words, cards can be appearing to the user to get larger and smaller as
the game goes on, but the cards cannot be “stretching” into different aspect ratios as
the game is played.

4. The symbols on cards should be proportional to the size of the card (i.e. large cards
should have large symbols and smaller cards should have smaller symbols).

5. Users must be able to select up to 3 cards by touching on them in an attempt to make
a Set (i.e. 3 cards which match, per the rules of Set). It must be clearly visible to the
user which cards have been selected so far.

6. After 3 cards have been selected, you must indicate whether those 3 cards are a match
or mismatch. You can show this any way you want (colors, borders, backgrounds,
whatever). Anytime there are 3 cards currently selected, it must be clear to the user
whether they are a match or not (and the cards involved in a non-matching trio must
look different than the cards look when there are only 1 or 2 cards in the selection).

7. Support “deselection” by touching already-selected cards (but only if there are 1 or 2
cards (not 3) currently selected).

8. When any card is touched on and there are already 3 matching Set cards selected,
then …
a. as per the rules of Set, replace those 3 matching Set cards with new ones from the

deck
b. if the deck is empty then the space vacated by the matched cards (which cannot be

replaced since there are no more cards) should be made available to the remaining
cards (i.e. which may well then get bigger)

c. if the touched card was not part of the matching Set, then select that card
d. if the touched card was part of a matching Set, then select no card

PAGE OF ASSIGNMENT III: SET2 8

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

9. When any card is touched and there are already 3 non-matching Set cards selected,
deselect those 3 non-matching cards and select the touched-on card (whether or not it
was part of the non-matching trio of cards).

10. You will need to have a “Deal 3 More Cards” button (per the rules of Set).
a. when it is touched, replace the selected cards if the selected cards make a Set
b. or, if the selected cards do not make a Set (or if there are fewer than 3 cards

selected, including none), add 3 new cards to join the ones already on screen (and
do not affect the selection)

c. disable or hide this button if the deck is empty
11. You also must have a “New Game” button that starts a new game (i.e. back to 12

randomly chosen cards).
12. To make your life a bit easier, you can replace the “squiggle” appearance in the Set

game with a rectangle.
13. You must author your own Shape struct to do the diamond.
14. Another life-easing change is that you can use a semi-transparent color to represent

the “striped” shading. Be sure to pick a transparency level that is clearly
distinguishable from “solid”.

15. You can use any 3 colors as long as they are clearly distinguishable from each other.
16. You must use an enum as a meaningful part of your solution.
17. You must use a closure (i.e. a function as an argument) as a meaningful part of your

solution.
18. Your UI should work in portrait or landscape on any iOS device. This probably will

not require any work on your part (that’s part of the power of SwiftUI), but be sure to
experiment with running on different simulators/Previews in Xcode to be sure.

PAGE OF ASSIGNMENT III: SET3 8

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Hints
1. Feel free to use AspectVGrid to lay out your cards if you’d like (since it generally lays

out its Views in the way the Required Tasks proscribe). You are not required to do so,
however. You can also modify it if you want (especially if you want to enforce a
minimum card size).

2. Make sure you think clearly about what is in your Model, what is in your ViewModel
and what is in your View. Always ask yourself “is this about how the Set game is played
or about how it is presented?”

3. Your Model should clearly reveal the status of all the cards that are or ever have been
in the deck.

4. In any complexity trade-off between View and ViewModel, make your View simpler.
5. Your Model doesn’t really have complexity “trade-offs” because it is just trying to

present a UI-independent programming interface that plays the game of Set as
elegantly as possible. The ViewModel has to adapt to your Model’s design (if your
Model design is a good one, this shouldn’t be too difficult for your ViewModel).

6. Don’t forget that the View is just always a reflection of the Model. This is “reactive,”
“declarative” UI programming. The Model changes and the View is just declared to
look like something completely based on the current state of the Model (accessed by
the View through the ViewModel of course). Try to break free from the “imperative”
model of programming you’ve probably grown up with (i.e. you call a function and
something happens and then you call another function and something else happens,
etc.). That’s not how we do UI in SwiftUI.

7. It’d probably be good MVVM design not to hardwire “display-oriented” things like
colors or even shape and shading names into the names of things in your Model.
Imagine having themes for your Set game just as you did for Memorize. Remember
that your Model knows little to nothing about how the game is going to be presented to
the user. “Penguin Set” anyone?

8. A fairly simple way to draw the cards is to draw the symbols using an aspect ratio that
is 3 times the aspect ratio of the cards. In other words, if your card aspect ratio is 2/3,
then the aspect ratio of each symbol would be 2/1 (twice as wide as it is high). A
GeometryReader to might be useful to figure out what the card’s aspect ratio is when you
are drawing the symbols on a card. Be careful about the effects of padding and stack
spacing on this though.

9. Be careful to test your “end game” (i.e. when the deck runs out). To make testing this
easier, maybe you make any 3 cards match in testing mode—that way you can get to
the end of the game quickly. Or test with a partial deck.

10. Don’t forget to put proper access control on all your vars and funcs.

PAGE OF ASSIGNMENT III: SET4 8

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

11. We are going to be covering animation in lecture next week and thus before this
assignment is due. Assignment 4 is going to have you adding animation to your Set
game. Finish a non-animated version of Set and submit it as A3 before moving onto
an animated version for A4.

12. Remember that you can turn a computed var (or a func) that returns some View into a
“ViewBuilder” by putting @ViewBuilder in front of it. This can be convenient if you
just want a function that uses if-else or switch to pick from a list of Views.

13. You might also be tempted to return some Shape from a function. That is rarely done
because there’s no such thing as a “@ShapeBuilder” (i.e. something like @ViewBuilder for
Shapes). You can, however, accept some Shape as an argument to a function. Example:
func applyShading(to shape: some Shape) -> some View.

14. Swift has the type Bool built into it. A Bool is a variable with two states (true or false).
Unfortunately, Swift has no built-in type for a variable that has three states. You might
consider inventing such a thing because a Set game has an awful lot of instances of
things with three states.

15. Your custom Shape (the diamond) will probably not be able to do strokeBorder (because
that modifier only works on InsettableShapes). Just use stroke (hopefully your symbols
should be nowhere near the edge of your card).

PAGE OF ASSIGNMENT III: SET5 8

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Things to Learn
Here is a partial list of concepts this assignment is intended to let you gain practice with
or otherwise demonstrate your knowledge of.
1. All the things from assignments 1 and 2, but from scratch this time
2. Access Control
3. Shape
4. GeometryReader
5. enum
6. Closures

PAGE OF ASSIGNMENT III: SET6 8

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Evaluation
In all of the assignments this quarter, writing quality code that builds without warnings
or errors, and then testing the resulting application and iterating until it functions
properly is the goal.
Here are the most common reasons assignments are marked down:

• Project does not build.
• One or more items in the Required Tasks section was not satisfied.
• A fundamental concept was not understood.
• Project does not build without warnings.
• Code is visually sloppy and hard to read (e.g. indentation is not consistent, etc.).
• Your solution is difficult (or impossible) for someone reading the code to

understand due to lack of comments, poor variable/method names, poor solution
structure, long methods, etc.

Often students ask “how much commenting of my code do I need to do?” The answer
is that your code must be easily and completely understandable by anyone reading it.

PAGE OF ASSIGNMENT III: SET7 8

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Extra Credit
We try to make Extra Credit be opportunities to expand on what you’ve learned this
week. Attempting at least some of these each week is highly recommended to get the
most out of this course.
If you choose to tackle an Extra Credit item, mark it in your code with comments so your
grader can find it.
1. Draw the actual squiggle instead of using a rectangle.
2. Draw the actual striped “shading” instead of using a semi-transparent color.
3. Keep score somehow in your Set game. You can decide what sort of scoring would

make the most sense.
4. Give higher scores to players who choose matching Sets faster (i.e. incorporate a time

component into your scoring system).
5. Figure out how to penalize players who chose Deal 3 More Cards when a Set was

actually available to be chosen.
6. Add a “cheat” button to your UI.
7. Support two players. No need to go overboard here. Maybe just a button for each

user (one upside-down at the top of the screen maybe?) to claim that they see a Set on
the board. Then that player gets a (fairly short) amount of time to actually choose the
Set or the other person gets as much time as they want to try to find a Set (or maybe
they get a longer, but not unlimited amount of time?). Maybe hitting “Deal 3 More
Cards” by one user gives the other some medium amount of time to choose a Set
without penalty? You will need to figure out how to use Timer to do these time-limited
things.

8. Can you think of a way to make your application work for people who are color-
blind? If you tackle this Extra Credit, make it so that “color-blind mode” is on only if
some Bool somewhere is set to true (and submit your application with it in the false
state). In other words, you must still satisfy the Required Tasks and they specifically
ask you to use 3 distinct colors. Some way to change the value of this Bool in the UI is
not required, but you can include it if you want.

PAGE OF ASSIGNMENT III: SET8 8

	Assignment III: Set
	Objective
	Due
	Materials
	Required Tasks
	Hints
	Things to Learn
	Evaluation
	Extra Credit

