
CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Assignment VI: Memorize
Themes

Objective

The goal of this assignment is to learn about how to have multiple MVVMs in your
application and how to present groups of Views via navigation or modally and how to
present/edit a bunch of info via controls and forms.

Be sure to review the Hints section below!

Also, check out the latest in the Evaluation section to make sure you understand what
you are going to be evaluated on with this assignment.

Due
This assignment is due before lecture 15.

Materials
• You will start this assignment with at least your Memorize from Assignment 2. You will

probably also want to incorporate the changes from the Animation lectures so that your
Memorize is awesome, but that is not required. 

PAGE OF ASSIGNMENT VI: MEMORIZE THEMES1 9

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Required Tasks
1. Your game from A2 should no longer choose a random theme, instead, its ViewModel

should have a theme var that can be set. Other than using this theme var to configure
the game, your EmojiMemoryGame ViewModel should not have any other theme-
related code in it (i.e. no initializing of themes, storing of themes, etc.).

2. Your Memorize application should now show a “theme chooser” UI when it launches
(instead of showing a game).

3. Use a List to display the themes in this chooser.

4. Each row in the List must display the name of the theme, the color of the theme,

how many cards are in the theme and some sampling of the emoji in the theme.
How it arranges this is up to you.

5. Touching on a theme in the List should navigate to playing a game with that theme.
In other words, the List is in a navigating container and a NavigationLink surrounds
each theme in the List (the destination of the link is an EmojiMemoryGameView).

6. While playing a game, the name of the theme should be on screen somewhere and
you should also continue to support existing functionality from A2 like score, new
game, etc. (you may rearrange the UI to be different from A2’s version if you wish).

7. Provide some UI (a Button or whatever) to add a new theme to the List in your
chooser.

8. The chooser must support deleting themes (you probably want use swipe to delete for
this).

9. The chooser must also support editing themes modally (i.e. via sheet or popover).
How you cause this sheet or popover to appear is up to you.

10. The theme editing UI must use a Form.

11. In the theme editing UI, allow the user to edit the name of the theme, to add emoji to

the theme, to remove emoji from the theme, to specify how many cards are in the
theme, and to specify the color of the theme.

12. The themes must be persistent (i.e. relaunching your app should not cause all the theme
editing you’ve done to be lost). The games themselves are not persistent (just the
themes).

13. You can choose whether you want to build your application for iPhone only (with
NavigationStack) or iPhone and iPad (with NavigationSplitView). Also see Extra
Credit #2.

14. Get your application working on a physical iOS device of your choice (as you must for
your final project as well). 

PAGE OF ASSIGNMENT VI: MEMORIZE THEMES2 9

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Hints
1. While you are welcome to include the animation code from lecture in your Memorize

game too (again, highly recommended!), you’ll probably want to skip the dealing
animation since your game is going to be resetting each time you change its theme
and the dealing will likely be annoying.

2. Your theme choosing will be an entirely different MVVM from your game’s MVVM.

3. You’ll likely want to start by creating a ViewModel for your theme choosing view. This

is just a store for your themes. A simple array of themes that you persist into
UserDefaults or the file system as JSON is all you’ll need.

4. The trickiest part of making your themes persistent is going to be the color of the
theme. We know we can’t represent a color in our theme as a Color (since that’s a UI
representation and is not Codable in any case). So we strongly recommend
representing a color inside your theme in this assignment as a struct with 4 floating
point numbers: the color’s red, green, blue, and alpha (transparency) level (aka RGBA).
To aid you in this, we have included some simple code below that converts back and
forth from a Color to an RGBA.

5. Since your theme struct is now going to represent the color internally as this 4
floating point number struct, you’ll want to be able to reconstruct a Color from this
struct. The provided RGBA code can do that as well. You’ll probably want to add
some nice API to your theme (outside of the Model code) so that other code in your
app (e.g. your View) doesn’t even have to know about this RGBA thing.

6. This application is focused on the themes. The playing of the game is almost
incidental. These games are, essentially, “temporary UI things” that the theme
choosing view is utilizing to show you the theme in action. Think of the game-
playing as just “testing out the theme”. It might be hard to shift your perspective
from the game(s) being the focus (in A1 and A2) to the themes being the focus now, but
that’s what we’re doing in this assignment.

7. For example, navigating away from a game and back is probably going to reset the
game. The Required Tasks don’t say that this is not allowed (though it is unfortunate).
Fixing this is actually Extra Credit (#3). We want you focused on the UI and
persistence of the themes (not the games), so don’t spend time on EC3 until you’ve
finished all of the Required Tasks.

8. You can easily get a Binding to a particular theme in your theme store at any time by
getting the index of the theme in the store’s themes array using something along the
lines of index = store.themes.firstIndex(where: { $0.id == themeid }) and
then getting a Binding to it using $store.themes[index].

9. Don’t make the code in your theme editing view one gigantic var body. Break it
down into smaller Views (at least one for each Section, for example). Shoot for 12
lines of code per func/computed var. Don’t be afraid to make a new View if you

PAGE OF ASSIGNMENT VI: MEMORIZE THEMES3 9

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

need to. Similarly, cleanly organize the code in your custom View that shows each row
in the List.

10. One of the goals of this assignment is to start getting some experience learning to use
SwiftUI API that hasn’t been directly covered in lecture. For example, you’ll probably
want to use Stepper for entering the number of pairs of cards in a theme and you’ll
probably want to use ColorPicker for choosing the color of the theme. Consider
using .swipeActions to bring up your theme editing view.

11. Don’t let the part of your theme editing UI that chooses a theme’s number of pairs of
cards choose a number that is more than the number of emoji available in the theme!
Nor should you let it choose fewer than two pairs.

12. You’ll have to decide what to do if there are (or threaten to be) fewer than two emoji
in the theme at any point during editing. There are multiple reasonable approaches
to this situation.

13. The Required Tasks don’t say anything about what sort of UI you have to employ to
add or remove emoji from your theme in your theme editor. That’s up to you to
decide.

14. If you target iPad+iPhone, then you’ll be using NavigationSplitView. In this
scenario, it’s probably simplest to not even use a .navigationDestination and instead
use List(selection:) and use your selection to choose what is showing in the detail
side of the NavigationSplitView. You’ll want the selected theme variable to be your
theme’s id (rather than a theme itself) since you’ll be editing the themes out from
under the (always visible on iPad) List and you want the selected theme to stay
selected through these changes to the themes.

15. If you target iPhone only, then you’ll be using NavigationStack without any selection
in your List and will need to use .navigationDestination(for:) for the chosen
theme (and perhaps .navigationDestination(isPresented:) for a newly-added
theme if you so choose).

16. Suggested work order (again, just a Hint, not a Required Task) …

a. If you put a bunch of theme-related code in your game’s view model in A2, rip it

out of there and put it in your theme struct where it belongs. The only thing
theme-related that should be in your game’s view model is a var to hold the theme
which it should use to create the Model and report the theme’s color to the UI.

b. Update your theme struct to use RGBA instead of a String to represent a color.
Your game view model might want to provide some “easy access” to this for the
view (perhaps via an extension or two?).

c. Create a simple, persistent store view model for your themes.

d. Create a List of the themes found in the store and make this List be the “content

view” of your application.

PAGE OF ASSIGNMENT VI: MEMORIZE THEMES4 9

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

e. Add navigation from a theme to a game view whose view model uses that theme.

f. Add a button to add a new theme to your store (it should then appear in the List

automatically if you’ve created your List properly).

g. Add swipe to delete (.onDelete) to the ForEach inside of your List. This should

be a couple of lines of code. If it’s not, move on to the next work item and come
back to this one.

h. Add some UI somewhere to cause a (blank) editor view to appear modally in
a .sheet (or .popover, but .sheet recommended).

i. Implement the theme editor view (you will need to pass a Binding to it that binds
to the theme in the store that it should edit).

j. It would be nice if creating a new theme automatically opened up the editor on
that theme (like we did with new Palettes in EmojiArt). 

PAGE OF ASSIGNMENT VI: MEMORIZE THEMES5 9

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

RGBA

struct RGBA: Codable, Equatable, Hashable {

 let red: Double

 let green: Double

 let blue: Double

 let alpha: Double

}

extension Color {

 init(rgba: RGBA) {

 self.init(.sRGB, red: rgba.red, green: rgba.green, blue: rgba.blue, opacity: rgba.alpha)

 }

}

extension RGBA {

 init(color: Color) {

 var red: CGFloat = 0

 var green: CGFloat = 0

 var blue: CGFloat = 0

 var alpha: CGFloat = 0

 UIColor(color).getRed(&red, green: &green, blue: &blue, alpha: &alpha)

 self.init(red: Double(red), green: Double(green), blue: Double(blue), alpha: Double(alpha))

 }

}

PAGE OF ASSIGNMENT VI: MEMORIZE THEMES6 9

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Things to Learn
Here is a partial list of concepts this assignment is intended to let you gain practice with
or otherwise demonstrate your knowledge of.

1. List

2. Form

3. NavigationView

4. Modal presentation

5. TextField

6. Multiple MVVMs

7. Codable persistence

8. UserDefaults 

PAGE OF ASSIGNMENT VI: MEMORIZE THEMES7 9

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Evaluation
In all of the assignments this quarter, writing quality code that builds without warnings
or errors, and then testing the resulting application and iterating until it functions
properly is the goal.

Here are the most common reasons assignments are marked down:

• Project does not build.

• One or more items in the Required Tasks section was not satisfied.

• A fundamental concept was not understood.

• Project does not build without warnings.

• Code is visually sloppy and hard to read (e.g. indentation is not consistent, etc.).

• Your solution is difficult (or impossible) for someone reading the code to

understand due to lack of comments, poor variable/method names, poor solution
structure, long methods, etc.

Often students ask “how much commenting of my code do I need to do?” The answer
is that your code must be easily and completely understandable by anyone reading it.

PAGE OF ASSIGNMENT VI: MEMORIZE THEMES8 9

CS193P IOS APPLICATION DEVELOPMENT SPRING 2023

Extra Credit
We try to make Extra Credit be opportunities to expand on what you’ve learned this
week. Attempting at least some of these each week is highly recommended to get the
most out of this course. How much Extra Credit you earn depends on the scope of the
item in question.

If you choose to tackle an Extra Credit item, mark it in your code with comments so your
grader can find it.

1. Keep track of any emoji that a user removes from a theme as a “removed” or “not

included” emoji. Then enhance your Theme Editor to allow them to put removed
emoji back if they change their mind. Remember these removed emoji forever (i.e.
you will have to add state to your theme struct).

2. Write the code both for an iPhone-only version and for an iPad+iPhone version.
They are similar and can share a lot of code, but you’ll learn how to use
NavigationSplitView from one and NavigationStack with .navigationDestination
from the other.

3. Navigating away from a game and back is likely going to start the game over
(depending on how you’ve implemented the assignment). Make it so that it does not
reset the game.

Here’s a suggestion about how to make that work: Hold the view models of the games being
played into your theme-choosing view in an @State. Use a Dictionary whose keys are theme
ids and whose values are the EmojiMemoryGame ViewModels for the games you can
navigate to. This might seem kind of weird to put ViewModels in an @State instead
of an @ObservedObject, but when you actually want to use the ViewModel, you’re
going to be passing it into an @ObservedObject in some other View (i.e. your
EmojiMemoryGameView). You can use this Dictionary to get the ViewModel you need
each time you navigate to play the game and also to update the theme in all of the
games being played (i.e. in their ViewModels) whenever the user edits any of the
themes (i.e. you could do this in an onChange(of: <the store’s themes>) and probably
also in the onAppear of your theme chooser). This is all only a Hint. You do not have
to do it this way.

PAGE OF ASSIGNMENT VI: MEMORIZE THEMES9 9

	Assignment VI: Memorize Themes
	Objective
	Due
	Materials
	Required Tasks
	Hints
	RGBA
	Things to Learn
	Evaluation
	Extra Credit

