
CS193P IOS APPLICATION DEVELOPMENT		 SPRING 2021

Assignment I:

Memorize

Objective

The goal of this assignment is to recreate the demonstration given in the first two
lectures and then make some small enhancements. It is important that you understand
what you are doing with each step of recreating the demo from lecture so that you are
prepared to do those enhancements.

Mostly this is about experiencing the creation of a project in Xcode and typing code in
from scratch. Do not copy/paste any of the code from anywhere. Type it in
and watch what Xcode does as you do so.
Be sure to review the Hints section below!

Also, check out the latest in the Evaluation section to make sure you understand what
you are going to be evaluated on with this assignment.

Due

This assignment is due in one week. You should finish this assignment before you start
watching Lecture 3.

PAGE OF ASSIGNMENT I: MEMORIZE1 9

CS193P IOS APPLICATION DEVELOPMENT		 SPRING 2021

Materials

• You will need to install the (free) program Xcode 12 using the App Store on your Mac

(previous versions of Xcode will not work). It is highly recommended that you do this
immediately so that if you have any problems getting Xcode to work, you have time to
get help from Piazza.

• In order to recreate the demo, you will certainly need to watch the first two lectures (see
Piazza for all course materials).

• You will also need the SF Symbols application which can be downloaded from https://
developer.apple.com/sf-symbols. 

PAGE OF ASSIGNMENT I: MEMORIZE2 9

CS193P IOS APPLICATION DEVELOPMENT		 SPRING 2021

Required Tasks

1. Get the Memorize game working as demonstrated in lectures 1 and 2. Type in all the

code. Do not copy/paste from anywhere.

2. You can remove the ⊖ and ⊕ buttons at the bottom of the screen.

3. Add a title “Memorize!” to the top of the screen.

4. Add at least 3 “theme choosing” buttons to your UI, each of which causes all of the

cards to be replaced with new cards that contain emoji that match the chosen theme.
You can use Vehicles from lecture as one of the 3 themes if you want to, but you are
welcome to create 3 (or more) completely new themes.

5. The number of cards in each of your 3 themes should be different, but in no case
fewer than 8.

6. The cards that appear when a theme button is touched should be in an unpredictable
(i.e. random) order. In other words, the cards should be shuffled each time a theme
button is chosen.

7. The theme-choosing buttons must include an image representing the theme and text
describing the theme stacked on top of each other vertically.

8. The image portion of each of the theme-choosing buttons must be created using an
SF Symbol which evokes the idea of the theme it chooses (like the car symbol and the
Vehicles theme shown in the Screenshot section below).

9. The text description of the theme-choosing buttons must use a noticeably smaller font
than the font we chose for the emoji on the cards.

10. Your UI should work in portrait or landscape on any iPhone. This probably will not
require any work on your part (that’s part of the power of SwiftUI), but be sure to
experiment with running on different simulators in Xcode to be sure. 

PAGE OF ASSIGNMENT I: MEMORIZE3 9

CS193P IOS APPLICATION DEVELOPMENT		 SPRING 2021

Screenshot

1. Screenshots are only provided in this course to help if you are having trouble

visualizing what the Required Tasks are asking you to do. Screenshots are not part of
the Required Tasks themselves (i.e. your UI does not have to look exactly like what
you see below).

PAGE OF ASSIGNMENT I: MEMORIZE4 9

CS193P IOS APPLICATION DEVELOPMENT		 SPRING 2021

Hints

1. Economy is valuable in coding. The easiest way to ensure a bug-free line of code is

not to write that line of code at all.

2. You will almost certainly want to make the emojis var in your ContentView be @State

(since you’re going to be changing the contents of this Array as you choose different
themes and shuffle cards).

3. You might have to pick your themes based on what symbols you’re able to find in SF
Symbols! There is a much wider variety of emoji to choose from in the universe than
there are SF Symbols to choose from.

4. Shuffling the cards might be easier than you think. Be sure to familiarize yourself
with the documentation for Array. Note that there are some seemingly identical
functions in Array, one of which is a verb and other is an adjective that is the past-
tense of that verb. Try to figure out the difference (though you can use either one). In
Swift, we generally prefer using the “past tense verb form” version. You’ll find out
why next week.

5. Other than reviewing the documentation for Array, you are not expected to use any
aspect of Swift/SwiftUI that was not shown in lecture (though you are welcome to try
to if you want!). You’ll be doing exactly the same sorts of things we did in lecture.

6. Required Task 6 only says the cards need to appear in random order when a theme
button is pressed. It is perfectly fine if your application launches with exactly the same
theme and cards in exactly the same order each time. We haven’t learned yet how to
set up the way a View looks when it first appears, so you can hardwire that as needed
for this assignment.

7. You can control the size of your SF Symbol images using .font(). SF Symbols are
often interleaved with surrounding Text and so Image(systemName:) conveniently
adjusts the size of the Image depending on the .font() it is modified with. It’s
probably a good idea to use .largeTitle for these (but not for the text captions
underneath them since Required Task 9 prohibits that).

8. Don’t forget that you can add View modifiers (like .font(), for example) either in the
Inspector on the right-hand side of Xcode’s screen or by directly typing in the code to
call the function.

9. Give some thought to how your theme-choosing buttons and their associated text are
aligned relative to each other, especially if the SF Symbols you choose are of varying
heights, for example. This is not a Required Task, but a good solution will consider
this. In lecture, we did briefly see how to align things that are stacked together.

PAGE OF ASSIGNMENT I: MEMORIZE5 9

CS193P IOS APPLICATION DEVELOPMENT		 SPRING 2021

10. We’re not looking for super-clean Swift code in this assignment (because you barely
know anything about the language!). So, for example, if you end up having numerous
array literals like ["🚗 ","🚕 ","🚙 ",“🚌 ”] peppered about your code (even if you end
up duplicating the same one in two different places), that’s okay. We’ll learn how to
handle constants like this next week.

11. A great way to help verify Required Task 10 is to add more iPhone devices to your
Preview pane (just like we did for dark mode in the demo). Give it a try!

12. If you really want to test yourself this week, check out the “Extra Credit” below!

PAGE OF ASSIGNMENT I: MEMORIZE6 9

CS193P IOS APPLICATION DEVELOPMENT		 SPRING 2021

Things to Learn

Here is a partial list of concepts this assignment is intended to let you gain practice with
or otherwise demonstrate your knowledge of.

1. Xcode 12

2. Swift 5.4

3. Writing code in the in-line function that supplies the value of a View’s body var

4. Syntax for passing closures (aka in-line functions) (i.e. code in { }) as arguments

5. Understanding the syntax of a ViewBuilder (e.g. “bag of Lego”) function

6. Using basic building block Views like Text, Button, Spacer, etc.

7. Putting Views together using VStack, HStack, etc.

8. Modifying Views (using .font(), etc.)

9. Using @State (we’ll learn much more about this construct later, by the way)

10. Very simple use of Array

11. Using a Range (e.g. 0..<emojiCount) as a subscript to an Array

12. The SF Symbols application

13. Putting system images into your UI using Image(systemName:)

14. Looking things up in the documentation (Array and possibly Font)

15. Int.random(in:) (Extra Credit)

16. Running your application in different simulators

PAGE OF ASSIGNMENT I: MEMORIZE7 9

CS193P IOS APPLICATION DEVELOPMENT		 SPRING 2021

Evaluation

In all of the assignments this quarter, writing quality code that builds without warnings
or errors, and then testing the resulting application and iterating until it functions
properly is the goal.

Here are the most common reasons assignments are marked down:

• Project does not build.

• One or more items in the Required Tasks section was not satisfied.

• A fundamental concept was not understood.

• Project does not build without warnings.

• Code is visually sloppy and hard to read (e.g. indentation is not consistent, etc.).

• Your solution is difficult (or impossible) for someone reading the code to

understand due to lack of comments, poor variable/method names, poor solution
structure, long methods, etc.

Often students ask “how much commenting of my code do I need to do?” The answer
is that your code must be easily and completely understandable by anyone reading it.
You can assume that the reader knows the SwiftUI API and knows how the Memorize
game code from lectures 1 and 2 works, but should not assume that they already know
your (or any) solution to the assignment.

PAGE OF ASSIGNMENT I: MEMORIZE8 9

CS193P IOS APPLICATION DEVELOPMENT		 SPRING 2021

Extra Credit

Here are some additional ways to challenge yourself …

1. Make a random number of cards appear each time a theme button is chosen. The

function Int.random(in: Range<Int>) can generate a random integer in any range,
for example, let random = Int.random(in: 15...75) would generate a random
integer between 15 and 75 (inclusive). Always show at least 4 cards though.

2. Try to come up with some sort of equation that relates the number of cards in the game
to the width you pass when you create your LazyVGrid’s
GridItem(.adaptive(minimum:maximum:)) such that each time a theme button is
chosen, the LazyVGrid makes the cards as big as possible without having to scroll.

For example, if 8 cards are shown, the cards should be pretty big, but if 24 cards are
shown, they should be smaller. The cards should still have our 2/3 aspect ratio.

It doesn’t have to be perfect either (i.e. if there are a few extreme combinations of
device size (e.g. iPod touch for example) and number of cards, punting to scrolling is
okay). The goal is to make it noticeably better than always using 65 is.

It’s probably impossible to pick a width that makes the cards fit just right in both
Portrait and Landscape, so optimize for Portrait and just let your ScrollView kick in if
the user switches to Landscape.

Your “equation” can include some if-else’s if you want (i.e. it doesn’t have to be a
single purely mathematical expression) but you don’t want to be special-casing every
single number from 4 to 24 cards or some such. Try to keep your “equation” code
efficient (i.e. not a lot of lines of code, but still works pretty well in the vast majority of
situations).

The type of the arguments to GridItem(.adaptive(minimum:maximum:)) is a CGFloat.
It’s just a normal floating point number that we use for drawing. You know what kind
of results 65 gives you, so you’re going to have to experiment with other numbers up
and down from there.

We haven’t covered functions yet, but you likely would want to put your calculation in
a func. If so, you’d have to figure that out on your own. Your reading assignment
covers func syntax in detail of course, but you probably just want something like this:
func widthThatBestFits(cardCount: Int) -> CGFloat.

When you do this, it becomes even more obvious that we really want the font we use
to draw the emoji to scale with the size of the cards. We’ll learn to do that next week
or the week after, so there’s nothing to do on that front this week.

Finally, what you’ll really come to understand is that the “equation” we need is
actually dependent on the size of the area we have to draw the cards in. That’s also
something we’ll find out more about in lecture in the next week or so.

PAGE OF ASSIGNMENT I: MEMORIZE9 9

	Assignment I:
	Memorize
	Objective
	Due
	Materials
	Required Tasks
	Screenshot
	Hints
	Things to Learn
	Evaluation
	Extra Credit

